Tuesday, November 5, 2019

Analysis of the Basketball Free Throw

Analysis of the Basketball Free Throw Analysis of the Basketball Free Throw Abstract The purpose of this paper is to analyze free throw shooting in basketball and to demonstrate the relationship between structural and functional anatomy and movement performance. This paper will discuss the muscles and actions that are important for the movement and how these muscles relate specifically to the movement outcome, limiting/facilitating joints and associated structures. Also discussed is the combination of muscle and joint motions important for movement success. We also briefly discuss the sources of movement failure. The final section of this paper will discuss how this movement is critical for success in sport and what happens with aging, disease, or injury that can compromise function and ability to perform the movement. Introduction The free throw shot is one the most important shots in basketball. In fact, around 20% of all points scored in the NCAA Division 1 are from free throws shots (Kozar, Vaughn, Lord, Whitfield, & Dve 243-248). The importance of this shot increases later in the game, because free throws tend to comprise greater percentage of the points that are scored in the last 5 minutes than the initial 35 minutes by either the wining or the losing team (Kozar et al., 123-129). The free throw shot is considered as the easiest shot for a professional basketball player, as the player stands alone, 15 feet away from the hoop with no defense or distraction. The player needs to get ready target, prime the ball and shoot (Okubo & Hubbard, 2006). A successful free throw shot requires deep concentration, and most importantly good mechanics to take a perfect shot. While a free throw shot does not seem like an action that needs a lot of movement, muscle groups and joints in a body work together in isotonic contractions, utilizing multiple muscle groups in creating the movement. A free throw shot engages elbow, hip and ankle extensors in addition to wrist and shoulder flexors. In the case of the kn ees, the joints are hinged and the movement starts with a flexion, preparing for the free throw. Quadriceps and hamstrings become the antagonist and the agonist. This movement happens as you utilize knee flexion so that the muscles work in pairs. Hamstring contraction pulls the joints which makes the individuals bend their knees. The next movement after the flexion is the knee extension. When the shooter releases the ball, the quadriceps is the agonist and the hamstring is the antagonist. The upper body sequence would be: extension of trunk, shoulder flexion that will follow extension of elbow and wrist flexion. A common error during the shot is performing shoulder flexion and elbow extension at once, so that the elbow extension contributes less in taking the shot and is combined with the shoulder flexion rather than adding to the hand velocity. As the ball is brought up with use of both hands, it passes directly in the front of shooter’s eyes and the shot is aimed with the e yes underneath the basketball (Alexander 9). When the trunk moves from its flexed position to an extension, the upward movement of trunk would push down on the lumbar vertebrae, pushing down on the sacroiliac joints, which in turn will push down on the body’s hip joints. Knee joints respond to downward force transmitted by the hips by producing a greater knee flexion. Players who, for various reasons, do not have the needed trunk flexion in this stage of the free throw shot would decrease their ability to load their legs for the shot and consequently might end up losing full contribution of leg extension from the deeply flexed position to free throw. It has been suggested that trunk extension can help in triggering more forceful moment of knee extension. Additionally, a deeper trunk extension produces added hyperextension at the neck area helping the shooter to retain the focus on the rim (Oddsson 109-118).

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.